Zadanie 1.
Udowodnij tożsamość:
$$(\sin x+\cos x)^2+(\sin x-\cos x)^2=2$$
$$
\begin{gathered}
(\sin x+\cos x)^2+(\sin x-\cos x)^2= \\
=\sin ^2 x+2 \sin x \cos x+\cos ^2 x+\sin ^2 x-2 \sin x \cos x+\cos ^2 x= \\
=2 \sin ^2 x+2 \cos ^2 x=2\left(\sin ^2 x+\cos ^2 x\right)=2 \cdot 1=2,
\end{gathered}
$$
bo $$\sin ^2 x+\cos ^2 x=1$$. Dana tożsamość jest prawdziwa dla każdego $$x \in R$$.
Zadanie 2.
Udowodnij tożsamość:
$$(1+\cos x)(1-\cos x)=\sin ^2 x$$
$$
(1+\cos x)(1-\cos x)=1-\cos ^2 x=\sin ^2 x
$$
(bo $$\sin ^2 x+\cos ^2 x=1$$ ). Dana tożsamość jest prawdziwa dla każdego $$x \in R$$.
Zadanie 3.
Udowodnij tożsamość:
$$\frac{1}{\cos x}-\cos x=\sin x \cdot \operatorname{tg} x$$
$$
\frac{1}{\cos x}-\cos x=\frac{1-\cos ^2 x}{\cos x}=\frac{\sin ^2 x}{\cos x}=\sin x \frac{\sin x}{\cos x}=\sin x \operatorname{tg} x .
$$
Biorąc pod uwagę dziedzinę funkcji $$y=\operatorname{tg} x$$ oraz fakt, że musi być spelniony warunek $$\cos x \neq 0$$, otrzymujemy, że dana tożsamość jest prawdziwa dla $$x \neq \frac{\pi}{2}+k \pi$$, gdzie $$k \in C$$
Zadanie 4.
Udowodnij tożsamość:
$$\cos ^4 x-\sin ^4 x=\cos ^2 x-\sin ^2 x$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 5.
Udowodnij tożsamość:
$$1+\operatorname{ctg} x=\frac{\sin x+\cos x}{\sin x}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 6.
Udowodnij tożsamość:
$$\cos ^4 x+\sin ^4 x=1-2 \sin ^2 x \cdot \cos ^2 x$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 7.
Udowodnij tożsamość:
$$(\operatorname{tg} x+\operatorname{ctg} x)^2=\frac{1}{\sin ^2 x \cos ^2 x}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 8.
Udowodnij tożsamość:
$$\operatorname{tg} x-\operatorname{ctg} x=(\operatorname{tg} x-1)(\operatorname{ctg} x+1)$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 9.
Udowodnij tożsamość:
$$\operatorname{ctg} x+\frac{\sin x}{1+\cos x}=\frac{1}{\sin x}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 10.
Udowodnij tożsamość:
$$(1+\sin x)\left(\frac{1}{\cos x}-\operatorname{tg} x\right)=\cos x$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 11.
Udowodnij tożsamość:
$$\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=\frac{2}{\sin x}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 12.
Udowodnij tożsamość:
$$\left(\frac{1}{\sin x}+\frac{1}{\cos x}\right)(\sin x+\cos x)=2+\frac{1}{\sin x \cos x}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 13.
Udowodnij tożsamość:
$$\left(\frac{1}{\sin x}-\frac{1}{\cos x}\right)(\sin x+\cos x)=\operatorname{ctg} x-\operatorname{tg} x$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 14.
Udowodnij tożsamość:
$$1-2 \sin ^2 x=\frac{1-\operatorname{tg}^2 x}{1+\operatorname{tg}^2 x}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 15.
Udowodnij tożsamość:
$$\sin (\alpha+\beta) \cdot \sin (\alpha-\beta)=\sin ^2 \alpha-\sin ^2 \beta$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 16.
Udowodnij tożsamość:
$$\frac{\operatorname{tg} 3 \alpha}{\operatorname{tg} \alpha}=\frac{3-4 \sin ^2 \alpha}{4 \cos ^2 \alpha-3}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 17.
Udowodnij tożsamość:
$$\frac{\sin \alpha+\cos 7 \alpha}{\cos \alpha-\sin 7 \alpha}=\frac{\sin 4 \alpha+\cos 4 \alpha}{\cos 4 \alpha-\sin 4 \alpha}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 18.
Udowodnij tożsamość:
$$\frac{\sin \left(30^{\circ}+\frac{x}{2}\right) \sin \left(30^{\circ}-\frac{x}{2}\right)}{\cos \left(30^{\circ}+\frac{x}{2}\right) \cos \left(30^{\circ}-\frac{x}{2}\right)}=\frac{2 \cos x-1}{2 \cos x+1}$$.
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 19.
Udowodnij tożsamość:
$$\frac{\sin 2 \alpha}{1+\cos 2 \alpha} \cdot \frac{\cos \alpha}{1+\cos \alpha}=\operatorname{tg} \frac{\alpha}{2}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 20.
Udowodnij tożsamość:
$$\frac{1-\cos ^2 \frac{3 \pi}{5}}{\left(\cos \frac{3 \pi}{5}-1\right)^2}=\operatorname{tg}^2 \frac{\pi}{5}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 21.
Udowodnij tożsamość:
$$\frac{\sin ^2 3 x}{\sin ^2 x}+8 \sin ^2 x=\frac{\cos ^2 3 x}{\cos ^2 x}+8 \cos ^2 x$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 22.
Udowodnij tożsamość:
$$\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}=\frac{1}{8}$$.
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 23.
Udowodnij tożsamość:
$$\cos 2 x \cos x-\sin 4 x \sin x=\cos 3 x \cos 2 x$$.
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 24.
Udowodnij tożsamość:
$$\cos 40^{\circ} \cos 80^{\circ} \cos 160^{\circ}=-\frac{1}{8}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)
Zadanie 25.
Udowodnij tożsamość:
$$3 \sin \frac{\pi}{9}-\sin \frac{\pi}{3}=4 \sin ^3 \frac{\pi}{9}$$
ROZWIĄZANIE DOSTĘPNE PO ZALOGOWANIU (informacje: DOSTĘP DO PORTALU)