M-Blog

Solski Stanisław

Solski Stanisław

ur: 1622

zm: 1701


O życiu i pochodzeniu Solskiego wiemy niewiele. Herbarze polskie nie wymieniają go w spisach szlachty, szlachcicem więc nie był i stąd może pochodzi chęć upowszechnienia wiedzy w języku polskim.

Urodzony w roku 1622 w Kaliskiem, Solski w 16 roku życia wstępuje do zakonu jezuitów. Studiuje teologię, a równocześnie wykłada w kolegiach matematykę. Za granicą był jedynie w Konstantynopolu, w obozie jeńców chrześcijańskich. Po powrocie do kraju przebywa w Warszawie, potem w Niepołomicach, we Lwowie, w końcu osiada w Krakowie.

Z jego pobytem w Warszawie związane są próby tzw. perpetuum mobile. Ułudzie tego zagadnienia ulegało w owym czasie, jak wiemy, wielu nawet krytycznie usposobionych uczonych, między innymi Kochański.

W Krakowie oddał się Solski pracy publikacyjnej, którą prowadzi aż do śmierci do 1701 r.

Najbardziej będzie nas interesowało jego dzieło pt.: Geometra Polski, tj. nauka rysowania, podziału i rozmierzania linii, angułów, figur i brył, które ukazało się w Krakowie w latach 1683 - 1686.

Jest ono dedykowane królowi Janowi III Sobieskiemu, a obejmuje trzy księgi podzielone na 14 rozdziałów, które autor nazywa Zabawami. Księga I zawiera geometrię elementarną wyłożoną w 6 Zabawach, od opisu figur płaskich, odcinków, kątów, trójkątów itd. poprzez elipsę, parabolę, hiperbolę aż do utworów przestrzennych, sfery, kostki, walców, graniastosłupów, ostrosłupów. Poszczególne zagadnienia ujmuje autor w ustępy, które nazywa Naukami. O obszerności wykładu świadczy fakt, że tylko w czterech pierwszych Zabawach jest ponad 400 Nauk. Systematyczny przegląd własności figur geometrycznych omawianych w Naukach czterech pierwszych Zabaw znajduje się w Zabawie 6. Jest ona najbardziej ciekawa, obejmuje między in. takie zagadnienia, jak kwadratura koła, elipsy, paraboli, hiperboli. Prócz szczegółowego przeglądu do tego czasu uzyskanych wyników w tej dziedzinie spotykamy tu oryginalne próby ujęcia tych problemów przez Solskiego.

Druga księga składa się z 5 Zabaw, a ponad 200 Nauk i poświęcona jest wyłącznie praktycznemu zastosowaniu geometrii z szerokim uwzględnieniem wiadomości z miernictwa. W księdze tej spotykamy również bardzo dokładny przegląd używanych wówczas w Polsce miar długości i powierzchni oraz tablice służące do przeliczania tych jednostek.

W księdze III opracowuje Solski w 3 Zabawach zagadnienia związane z obliczeniami powierzchni i objętości wielościanów i brył obrotowych. Podkreślić należy, że w całej pełni doceniał znaczenie arytmetyki i dlatego w tej księdze w Zabawie XIV zebrał najważniejsze wiadomości z tej dziedziny, ażeby objaśnić i uzasadnić obliczenia zawarte w poprzednich Zabawach. Zabawa XIV jest właściwie pełnym wykładem arytmetyki; obejmuje omówienie tych wszystkich tematów, które w tego rodzaju książkach spotykamy. Z nowych rzeczy podkreślilibyśmy wyczerpujące objaśnienie laseczek Nepera w oparciu o udoskonaloną ich konstrukcję oraz może nieco obszerniejsze uwzględnienie elementów kombinatoryki. Wykład arytmetyki jest tak jak w całym dziele bardzo obszerny i wyczerpujący. arytmetyki jest tak jak w całym dziele bardzo obszerny i wyczerpujący. Jako pewną nowość dydaktyczną wprowadził tu autor dla zaawansowanych streszczenia ujęte w formę wierszowaną. Mimo stosunkowo dużej objętości dzieła (644 str.) zaletą jego jest zwięzły i jasny język.

Wiele wysiłku włożył autor w stworzenie polskiej terminologii, zarówno w geometrii, jak i w arytmetyce. Zamiłowany w dokładności umieszcza na początku zestawienie wprowadzonych przez siebie terminów. Terminologia Solskiego stanowi poważny krok w rozwoju naszego języka matematycznego. Wprawdzie jeszcze figurują takie nazwy, jak anguł (kąt), trianguł (trójkąt), ale pojawiają się już także: bryła, cięciwa, wał albo słup okrągły (walec), słup wielościenny (graniastosłup), brożek (od brogu) okrągły (stożek) i inne.

Wspomnieć należy, że działalność Solskiego nie ograniczyła się do tego jednego dzieła. Jest on jeszcze autorem wydanej w języku polskim Księgi I Architekta Polskiego (1690), zawierającej wiadomości z mechaniki. W roczniku Acta Eruditorum z 1692 r. na str. 523 i 524 znajdują się pochlebne wzmianki o trzeciej pracy Solskiego z miernictwa, tym razem w języku łacińskim: Praxis nova et expeditissima geometrice mensurandi quasvis distantias altitudines et profonditates, Auctore D. Stanislao Solski, Crac 1688.

Related Articles

logo 2022 joomla footer

© 2022 Tomasz Grębski MATEMATYKA